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1 Introduction

In this section we will look at an example of duality. Recall the primal-dual pair and the associated
weak duality inequality.

p⋆ =

min
x

f(x)

s.t. gi(x) ≤ 0 i = 1, . . . ,m

hj(x) = 0 j = 1, . . . , p︸ ︷︷ ︸
Primal Problem

≥
max
λ,µ

F (λ, µ)

s.t. λ ≥ 0︸ ︷︷ ︸
Dual Problem

= d⋆ (1)

Lagrangian: L(x, λ, µ) := f(x) +
n∑

i=1

λigi(x) +

p∑
j=1

µjhj(x).

Dual function: F (λ, µ) := min
x

L(x, λ, µ)

Weak duality states that p⋆ ≥ d⋆. If instead we have p⋆ = d⋆, then we have strong duality.

1.1 Example: QCQP

min
x

(x2 + 1)

s.t. (x− 2)(x− 4) ≤ 0

Now compute the Lagrangian and associated dual function.

L(x, λ) = x2 + 1 + λ(x2 − 6x+ 8)

F (λ) = min
x

(λ+ 1)x2 − 6λx+ (8λ+ 1)

Differentiating and setting derivative with respect to x to zero we get

2(λ+ 1)x− 6λ = 0 =⇒ x =
3λ

λ+ 1
. (2)

Substituting this x back into L(x, λ), we obtain

F (λ) =

{
− 9λ

λ+1 + 8λ+ 1 if λ > −1

−∞ if λ ≤ −1

1



Figure 1: Primal problem. Solution occurs at x = 2 with optimal value p⋆ = 5.

Since we always have λ ≥ 0, the dual problem becomes

max
λ

− 9λ2

λ+1 + 8λ+ 1

s.t. λ ≥ 0

The first and second derivatives of F (λ) are

F ′(λ) =
9

(λ+ 1)2
− 1

F ′′(λ) = − 18

(λ+ 1)3

We can confirm that F (λ) is concave (negative second derivative), which is to be expected because
dual functions are always concave. The first derivative also tells us that the unique optimal point
is at λ⋆ = 2 with corresponding d⋆ = 5.

Figure 2: Dual problem. Solution occurs at λ⋆ = 2 with optimal value d⋆ = 5.
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2 Sensitivity of cost to changes in constraints

We will perturb the constraints with ui and vj and see how this affects the cost. Based on the figure
below, we can see that perturbing each constraint by the same amount can have a small effect, a
larger effect, or no effect (when the constraints are slack).

Here is the perturbed optimization problem and its dual.

p⋆(u, v) = min
x

f(x)

s.t. gi(x) ≤ ui i = 1, . . . ,m

hj(x) = vj j = 1, . . . , p

d⋆(u, v) = max
λ,µ

F (λ, µ)− λTu− µTv

s.t. λ ≥ 0

This works because we can write the dual function of this perturbed problem in terms of the dual
function of the unperturbed problem:

min
x

(
f(x) +

n∑
i=1

λi(gi(x)− ui) +

p∑
j=1

µj(hj(x)− vj)

)
= min

x
L(x, λ, µ)− λTu− µTv

= F (λ, µ)− λTu− µTv (last two terms do not depend on x)

Using weak duality, we can write the following inequality relating the primal optimal value of the
perturbed problem to that of the unperturbed problem.

p⋆(u, v) ≥ max
λ,µ

F (λ, µ)− λTu− µTv ≥ F (λ⋆, µ⋆)︸ ︷︷ ︸
p⋆(0,0)

−λ⋆Tu− µ⋆Tv

s.t. λ ≥ 0
(3)

The first inequality is due to weak duality, and the second is found by substituting the dual optimal
values for the unperturbed problem. Thus, we obtain the inequality:

p⋆(u, v) ≥ p⋆(0, 0)− λ⋆Tu− µ⋆Tv (4)

Now substitute u = tei and v = 0 into (4) and obtain p⋆(eit, 0) ≥ p⋆(0, 0)−λ⋆
i t. We have cases.
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• If t > 0, we can divide by t and obtain p⋆(eit,0)−p⋆(0,0)
t ≥ −λ⋆

i .

• If t < 0, we can divide by t and obtain p⋆(eit,0)−p⋆(0,0)
t ≤ −λ⋆

i .

Taking the limit t → 0, the left-hand side becomes a partial derivative. We can repeat a similar
argument letting u = 0 and v = tej to get an expression involving µ⋆

j . The final result is

∂p⋆(0, 0)

∂ui
= −λ⋆

i

∂p⋆(0, 0)

∂vj
= −µ⋆

j (5)

In other words, the partial derivative of the primal cost with respect to the perturbation of a
particular constraint is equal to the negative of the corresponding optimal dual variable.

2.1 Example: LP

p⋆(u) =


max cTx

s.t. Ax ≤ b+ u

x ≥ 0

 =


min
λ

(b+ u)Tλ

s.t. ATλ ≥ c

λ ≥ 0

 = d⋆(u) (6)

This leads to the chain of equalities

p⋆(u) = cTx⋆ = (b+ u)Tλ⋆ = p⋆(0) + µTλ⋆.

Again, we directly derive the sensitivity of the cost with respect to the constraint

∂p⋆(0)

∂ui
= λ⋆

i

Note that the sign is positive instead of negative as in (5) because our primal problem was a
maximization this time rather than a minimization.

Figure 3: Primal and dual for a perturbed LP. In the left, perturbing a constraint
changes the feasible set. If the perturbed constraint was active, this leads to a change
in the optimal cost. In the dual problem, the perturbation shows up in the cost. For
small perturbations, this does not change the value of the optimal dual variable.

In economics, λ is often referred to as the shadow price of the corresponding constraint. When the
cost is a dollar amount and the problem is to maximize profit, say, the shadow price is the price you
would be willing to pay to increase the constraint. It is what that constraint is worth to you.
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Note that by complementary slackness, we have (Ax⋆−b)Tλ⋆ = 0. So if a constraint is slack, the cor-
responding dual variable is zero, and so is the shadow price. So slack constraints are worth nothing
to us, since small changes in them will not affect the outcome of the optimization problem.

3 Derivation of LQR using KKT conditions

Recall the KKT conditions from Lecture 18. We will use the the Lagrangian stationarity condition
in deriving the solution for the LQR problem

minimize
u0,...,uN−1
x1,...,xN

1

2

N−1∑
t=0

(
xT
t Qxt + uT

t Rut

)
+

1

2
xT
NQfxN

s.t. xt+1 = Axt +But for t = 0, . . . , N − 1

(7)

Here, we will treat this as a constrained optimization problem where the ut and the xt are optimiza-
tion variables. where λt+1 is the dual variable (Lagrange multiplier) associated with the constraint
xt+1 = Axt +But. The Lagrangian for (7) is

L(x, u, λ) :=
1

2

N−1∑
t=0

(
xT
t Qxt + uT

t Rut

)
+

1

2
xT
NQfxN +

N−1∑
t=0

λT
t+1 (Axt +But − xt+1)

The stationarity conditions are:

∇utL = 0 : Rut +BTλut+1 = 0 for t = 0, . . . , N − 1 (8a)

∇xtL = 0 : Qxt +ATλt+1 − λt = 0 for t = 1, . . . , N − 1 (8b)
∇xNL = 0 : QfxN − λN = 0 (8c)
∇λtL = 0 : Axt +But − xt+1 = 0 for t = 1, . . . , N (8d)

there are 3N variables (x1:N , u0:N−1, λ1:N ) and 3N constraints. So under some standard assump-
tions (Q ⪰ 0 and R ≻ 0 suffices), the KKT conditions will have a unique solution.

If we solve (8a) for ut, we obtain ut = −R−1BTλt+1. Substituting this back into (8b)–(8d) to
eliminate ut, we obtain

xt+1 = Axt −BR−1BTλt+1 for t = 0, . . . , N − 1 (state equation)

λt = Qxt +ATxt for t = 0, . . . , N − 1 (co-state equation)
λN = QfxN (boundary condition)

From this point, we can use induction to prove that if λt+1 = Pt+1xt+1 (this holds for t = N−1 with
PN = Qf , then we will have λt = Ptxt, where Pt obeys the Riccati recursion. See the supplementary
notes on LQR derivations for details.
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4 Duality between the Kalman filter and LQR

In this section we will see that the Kalman Filter is in fact the dual of LQR. To do this, we will
include a tracking input in the LQR cost function.

minimize
u0,...,uN−1
x1,...,xN

1

2

N−1∑
t=0

(
xT
t Qxt + (ut − ūt)

TR(ut − ūt)
)
+

1

2
xT
NQfxN

s.t. xt+1 = Axt +But for t = 0, . . . , N − 1

(9)

The corresponding Lagrangian is:

L(x, u, λ) =
1

2

N−1∑
t=0

(
xT
t Qxt + (ut − ūt)

TR(ut − ūt)
)
+

1

2
xT
NQfxN +

N−1∑
t=0

λT
t+1 (Axt +But − xt+1)

Since our goal is to find the dual, we should minimize the Lagrangian with respect to the primal
variables x and u. This amounts to computing gradients with respect to xt and ut and setting them
equal to zero. This leads to the equations

∇utL = 0 : R(ut − ūt) +BTλut+1 = 0 for t = 0, . . . , N − 1 (10a)

∇xtL = 0 : Qxt +ATλt+1 − λt = 0 for t = 1, . . . , N − 1 (10b)
∇xNL = 0 : QfxN − λN = 0 (10c)

Solving for xt and ut (assuming Q and Qf are invertible), we obtain

xN = Q−1
f λN

xt = Q−1(λt −ATλt+1) for t = 0, . . . , N − 1

ut = ūt −R−1Bλt+1 for t = 0, . . . , N − 1

(11)

Substituting the expressions (11) back into the formula for the Lagrangian and performing some
extensive simplifications, we obtain the expression for the dual function F (λ):

F (λ) = −1

2

N−1∑
t=0

(
(λt −ATλt+1)

TQ−1(λt −ATλt+1) + (BTλt+1 −Rūt)
TR−1(BTλt+1 −Rūt)

)
− 1

2
λT
NQ−1

f λN +
1

2

N−1∑
t=0

ūT
t Rūt

The dual problem is to maximize F (λ), which is the same as minimizing −F (λ). Define the new
variables wt := λt − ATλt+1 and vt := Rūt − BTλt+1. Also remove the ūT

t Rūt term since it is a
constant. We can now rewrite the dual optimization problem in the following compact form.

minimize
λ,w,v

1

2
λT
NQ−1

f λN +
1

2

N−1∑
t=0

(
wT
t Q

−1wt + vT
t R

−1vt

)
subject to: λt = ATλt+1 + wt

Rūt = BTλt+1 + vt
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This is precisely the MAP optimization formulation for a Kalman filtering problem!

The table below shows how the LQR-related symbols correspond to the associated symbols we used
when studying the Kalman filtering problem.

LQR KF

Qf Σ0

Q W
R V
AT A
BT C
Rūt yt
λN x0
...

...
λ0 xN

Therefore, the dual of LQR with input tracking is precisely the MAP formulation of Kalman filtering,
where the Lagrange multipliers used to encode the dynamics in LQR (the co-state) becomes the
state of the dynamical system we are estimating for the filtering problem, and now time flows in
the reverse direction.
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